An environmental pollutant, 9,10‐phenanthrenequinone, activates human TRPA1 via critical cysteines 621 and 665

نویسندگان

  • Katsuhiko Muraki
  • Takashi Sekine
  • Yuna Ando
  • Hiroka Suzuki
  • Noriyuki Hatano
  • Tadashi Hirata
  • Yukiko Muraki
چکیده

Transient receptor potential ankyrin 1 (TRPA1) is activated by noxious cold, mechanical stimulation, and irritant chemicals. In our recent study, 9, 10-phenanthrenequinone (9,10-PQ) is the most potent irritant for activation of NRF2 among 1395 cigarette smoke components and it may be, therefore, important to find its additional targets. Here, we show that 9,10-PQ functions as an activator of TRPA1 in human embryonic kidney (HEK) cells expressing human wild-type TRPA1 (HEK-wTRPA1) and human alveolar A549 (A549) cells. Application of 9,10-PQ at 0.1-10 μmol/L induced a concentration-dependent Ca2+ response as well as inward currents at -50 mV in HEK-wTRPA1 cells. The current response was blocked by TRPA1 antagonists, HC-030031 (HC) and A-967079. To test whether 9,10-PQ affects the cysteine residues of TRPA1, we expressed mutant TRPA1 channels in HEK cells (HEK-muTRPA1) in which six different cysteine residues were replaced with serine. Among them, a mutation of cysteine 621 (C621S) abolished the 9,10-PQ-induced Ca2+ and current responses. The channel activity induced by 9,10-PQ was also abolished in excised inside-out patches isolated from HEK-muTRPA1 cells with the C621S substitution. Although a mutation of cysteine 665 (C665S) reduced the 9,10-PQ-induced response, channel sensitization by pretreatment with Cu2+ plus 1,10-phenanthroline and by internal dialysis of 3 μmol/L Ca2+ restored the response. However, a double mutant with C621S and C665S substitutions had little response to 9,10-PQ, even when sensitized by Ca2+ dialysis. In A549 cells, 9,10-PQ induced an HC-sensitive Ca2+ response. Our findings demonstrate that 9,10-PQ activation of human TRA1 is dependent on cysteine residues 621 and 665.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1.

The transient receptor potential ankyrin 1 (TRPA1) nonselective cation channel has a conserved function as a noxious chemical sensor throughout much of Metazoa. Electrophilic chemicals activate both insect and vertebrate TRPA1 via covalent modification of cysteine residues in the amino-terminal region. Although naturally occurring electrophilic plant compounds, such as mustard oil and cinnamald...

متن کامل

The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1

Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. ...

متن کامل

Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone

9,10-phenanthrenequinone Sushobhan Avasthi, Yabing Qi, Grigory K. Vertelov, Jeffrey Schwartz, Antoine Kahn, and James C. Sturm Dept. of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA Dept. of Chemistry, Princeton University, Princeton, New Jersey 08544, USA Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, N...

متن کامل

TRPA1: the species difference

provided a comprehensive review on the recent progress and remaining puzzles. Ample evidence suggests that the sensory function of TRPA1 is evolutionarily conserved. This notion is further supported by the fact that TRPA1 from several mammalian species (human, rat, and mouse) is activated by common ligands (a plethora of electrophylus) through a common mechanism (covalent modification). However...

متن کامل

Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1.

Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017